ในวิชาคณิตศาสตร์หรือในชีวิตประจำวัน จะพบประโยคที่ได้จากการเชื่อมประโยคอื่นๆ ด้วยคำว่า “และ” “หรือ” “ถ้า…แล้ว…” “ก็ต่อเมื่อ” หรือพบประโยคซึ่งเปลี่ยนแปลงมาจากประโยคเดิมโดย เติมคำว่า “ไม่” คำเหล่านี้เรียกว่า ตัวเชื่อม(connectives)
วิธีคิดแถวของตารางค่าความจริงนั้น โดยใช้สูตร
2 กำลัง N ( N คือ จำนวนของประพจน์) เช่น
มี 2 ประพจน์ ได้แก่ p,q 2 กำลัง 2 เท่ากับ 4 แถว
มี 3 ประพจน์ ได้แก่ p,q,r 2 กำลัง 3 เท่ากับ 8 แถว
มี 4 ประพจน์ ได้แก่ p,q,r,s 2 กำลัง 4 เท่ากับ 16 แถว เป็นต้น
การเชื่อมประพจน์ด้วยตัวเชื่อม “และ”
ในการเชื่อมประพจน์ด้วย”และ”มีข้อตกลงว่าประพจน์ใหม่จะเป็นจริงในกรณีที่ประพจน์ที่นำมาเชื่อมกันนั้นเป็นจริงทั้งคู่กรณีอื่นๆเป็นเท็จทุกกรณี
p q แทน p และ q
p q เป็น T กรณีเดียวคือกรณีที่ทั้ง p และ q เป็น T
p q เป็น T กรณีเดียวคือกรณีที่ทั้ง p และ q เป็น T
p
|
q
|
p q
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
F
|
F
|
F
|
F
|
การเชื่อมประพจน์ด้วยตัวเชื่อม “หรือ”
ในการเชื่อมประพจน์ด้วย “หรือ” มีข้อตกลงว่าประพจน์ใหม่จะเป็นเท็จในกรณีที่ ประพจน์ที่นำมาเชื่อมกันเป็นเท็จทั้งคู่ กรณีอื่นๆ เป็นจริงทุกกรณี
p V q แทน p หรือ q
p V q เป็น F กรณีเดียวคือกรณีที่ทั้ง p และ q เป็น F
p V q แทน p หรือ q
p V q เป็น F กรณีเดียวคือกรณีที่ทั้ง p และ q เป็น F
p |
q
|
p V q
|
T
|
T
|
T
|
T
|
F
|
T
|
F
|
T
|
T
|
F
|
F
|
F
|
การเชื่อมประพจน์ด้วยตัวเชื่อม “ถ้า…แล้ว…”
ในการเชื่อมประพจน์ด้วย “ถ้า…แล้ว…” มีข้อตกลงว่าประพจน์ใหม่จะเป็นเท็จ ในกรณีที่เหตุเป็นจริงและผลเป็นเท็จเท่านั้น กรณีอื่นๆเป็นจริงทุกกรณี ถ้า p และ q เป็นประพจน์ ประพจน์ใหม่ที่ได้จากการเชื่อมด้วย “ถ้า…แล้ว…” คือ “ถ้า p แล้ว q” เขียนแทนด้วย
p q และตารางค่าความจริงของ p q เขียนได้ดังนี้
p q แทน ถ้า p แล้ว q
p q เป็น F กรณีเดียวคือกรณีที่ทั้ง pเป็น Tและ qเป็น F
p q และตารางค่าความจริงของ p q เขียนได้ดังนี้
p q แทน ถ้า p แล้ว q
p q เป็น F กรณีเดียวคือกรณีที่ทั้ง pเป็น Tและ qเป็น F
p |
q
|
pq
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
T
|
F
|
F
|
T
|
การเชื่อมประพจน์ด้วยตัวเชื่อม “ก็ต่อเมื่อ”
การเชื่อมประพจน์ด้วยตัวเชื่อม “ก็ต่อเมื่อ” มีข้อตกลงว่า ประพจน์ใหม่จะเป็น
จริงในกรณีที่ประพจน์ที่นำมาเชื่อมกันนั้นเป็นจริงกันทั้งคู่หรือเป็นเท็จด้วยกัน
ทั้งคู่เท่านั้นกรณีอื่นเป็นๆเท็จเสมอ ถ้า p และ q เป็นประพจน์ ประพจน์ใหม่ที่
ได้การเชื่อมด้วย “ก็ต่อเมื่อ”คือ “p ก็ต่อเมื่อ q” เขียนแทนด้วย pq
และตารางค่าความจริงของ p q เขียนได้ดังนี้
p q แทน p ก็ต่อเมื่อ q
p q เป็นT เมื่อp และq มีค่าความจริงเหมือนกัน
จริงในกรณีที่ประพจน์ที่นำมาเชื่อมกันนั้นเป็นจริงกันทั้งคู่หรือเป็นเท็จด้วยกัน
ทั้งคู่เท่านั้นกรณีอื่นเป็นๆเท็จเสมอ ถ้า p และ q เป็นประพจน์ ประพจน์ใหม่ที่
ได้การเชื่อมด้วย “ก็ต่อเมื่อ”คือ “p ก็ต่อเมื่อ q” เขียนแทนด้วย pq
และตารางค่าความจริงของ p q เขียนได้ดังนี้
p q แทน p ก็ต่อเมื่อ q
p q เป็นT เมื่อp และq มีค่าความจริงเหมือนกัน
p |
q
|
p q
|
T
|
T
|
T
|
T
|
F
|
F
|
F
|
T
|
F
|
F
|
F
|
T
|
นิเสธของประพจน์
นิเสธของประพจน์ p เขียนแทนด้วย ~p และ
ตารางค่าความจริง ของ ~p เขียนได้ดังนี้
~p (T) แทน p (F)
~ p มีค่าความจริงตรงกันข้ามกับค่าความเป็นจริงของp
นิเสธของประพจน์ p เขียนแทนด้วย ~p และ
ตารางค่าความจริง ของ ~p เขียนได้ดังนี้
~p (T) แทน p (F)
~ p มีค่าความจริงตรงกันข้ามกับค่าความเป็นจริงของp
p |
~p
|
T
|
F
|
F
|
T
|
ไม่มีความคิดเห็น:
แสดงความคิดเห็น